ВЗАИМОДЕЙСТВИЕ КОМПОНЕНТОВ В СИСТЕМАХ Li—(Mg, Al)—Si

Методами рентгеновского анализа построены изотермические сечения диаграмм состояния систем Li—Mg—Si, Li—Al—Si при 470 K. В системе Li—Mg—Si обнаружено 4 термических соединения составов Li₄MgSi₄, Li₁₂Mg₃Si₄, Li₃MgSi, Li₅Mg₃Si₄. Для всех соединений, кроме Li₄MgSi₄, определена кристаллическая структура. В системе Li—Al—Si образуется 4 термических соединения: Li₃Al₅Si₄, Li₅Al₅Si₄, Li₃Al₅Si₄ и Li₅Al₅Si₄. Определена структура соединения Li₅Al₅Si₄ и подтверждены литературные данные для интерметаллидов Li₅Al₅Si₄, Li₅Al₅Si₄. Структура соединения Li₅Al₅Si₄ полностью не определена. Соединения Li₄Mg₃Si₄ и Li₅Al₅Si₄ изотропны и являются сверхструктурными типу Cu₃Sb₄.

Для исследования фазовых равновесий при 470 K в системах Li—Mg—Si и Li—Al—Si было приготовлено 64 и 57 сплавов соответственно. Сплавы получали в электродуговой печи в атмосфере очищенного аргона под давлением 1.1·10^2 Па. Сплавы интенсивной шихты, состоящей из навесок чистых металлов (содержание основного металла не ниже 0.999, Li — 0.98 масс. дол.) и литографи Li—Mg. Состав сплавов контролировали, сравнивая массы шихты и сплава. Термическая обработка заключалась в гомогенизирующем отжиге сплавов в танталовых конфидерах, залитых в кварцевые ампулы, при 470 K в течение 500 ч. За калку сплавов проводили в холодной воде.

Рентгеновские картины сплавов систем Li—Mg—Si и Li—Al—Si получали в цилиндрических камерах Дебая диаметром 57.3 мм на нефильтированном CuKα-излучении.

Двухнаправленные исследуемые тройные, достаточно хорошо изучены и описаны в литературе: Li—Si [1], Li—(Mg, Al) [2], (Mg, Al)—Si [2].

Изотермическое сечение диаграмм состояния системы Li—Mg—Si при 470 K показано на рис. 1. Бинарные соединения третий компонент не растворяют. Растворимость Mg в Li достигает 0.70 ат. дол. и 0.18 ат. дол. В системе обнаружено 4 термических соединения, кристалло графические характеристики которых приведены в табл. 1. Все соединения имеют узкие области гомогенности.

Изотермическое сечение диаграммы состояния системы Li—Al—Si при 470 K показано на рис. 2. В системе образуется 4 термических интервалов.

<table>
<thead>
<tr>
<th>Соединение</th>
<th>Тип структуры</th>
<th>Пространственная группа</th>
<th>Периоды решетки, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li—Mg—Si</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li₄MgSi₄</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li₁₂Mg₃Si₄</td>
<td>Li₄Mg₃Si₄</td>
<td>F43d</td>
<td>1.0688(3)</td>
</tr>
<tr>
<td>Li₅Mg₃Si₄</td>
<td>Cu₃Mg₃Si₄</td>
<td>F43m</td>
<td>0.6388(2)</td>
</tr>
<tr>
<td>Li₅Mg₃Si₄</td>
<td>Mn₅Cu₃Si₄</td>
<td>Fm3m</td>
<td>0.6388(2)</td>
</tr>
<tr>
<td>Li—Al—Si</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li₅Al₃Si₂</td>
<td>Na₃As</td>
<td>P6₃/mmc</td>
<td>0.359</td>
</tr>
<tr>
<td>Li₁₂Al₃Si₄</td>
<td>Li₁₂Mg₃Si₄</td>
<td>F43d</td>
<td>1.0620(4)</td>
</tr>
<tr>
<td>Li₅Al₃Si₄</td>
<td>Li₅Al₃Si₄</td>
<td>F43m</td>
<td>0.359</td>
</tr>
</tbody>
</table>

© В. В. Павлюк, О. И. Бодак, Г. С. Ким, 1992

ISSN 0041-6095, Укр. Хим. Журн. 1992. T. 54, № 9
металлида. Для $\text{Li}_{13.3}\text{Al}_{6.7}\text{Si}_2$ [3] и LiAlSi [4] подтверждены литературные данные и найдены новые соединения $\text{Li}_2\text{Al}_5\text{Si}_4$ и Li_6AlSi_3. Кристаллографические характеристики термических соединений системы $\text{Li} - \text{Al} - \text{Si}$ также приведены в табл. 1. Бинарные соединения третий компонент не растворяют. Растворимость Li в Al достигает 0,08 ат. дол. Область гомогенности бинарного аллюминида лития LiAl при 470 К включает составы $\text{Li}_{4.48}\text{Al}_{0.54}$ и $\text{Li}_{0.55}\text{Al}_{0.48}$. Термические интерметаллиды имеют узкие области гомогенности.

Кристаллическая структура соединений была исследована методом порошка. Дифрактограммы получены на дифрактометрах ДРОН-3 (CuKα-излучение), ДРОН-2,0 (FeKα-излучение). Периоды решеток

<table>
<thead>
<tr>
<th>Атом</th>
<th>a/\AA</th>
<th>b/\AA</th>
<th>c/\AA</th>
<th>R-фактор</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Li}_{13}\text{Mg}_3\text{Si}_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>0,113(4)</td>
<td>0,148(4)</td>
<td>0,955(6)</td>
<td>2,0</td>
</tr>
<tr>
<td>Mg</td>
<td>0,110(6)</td>
<td>0,2105(6)</td>
<td>0,2105(6)</td>
<td>1,8(3)</td>
</tr>
<tr>
<td>Si</td>
<td>0,2105(6)</td>
<td>0,2105(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Li}_2\text{Al}_5\text{Si}_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>0,124(5)</td>
<td>0,149(6)</td>
<td>0,970(8)</td>
<td>2,6</td>
</tr>
<tr>
<td>Al</td>
<td>0,110(6)</td>
<td>0,2105(6)</td>
<td>0,2105(6)</td>
<td>1,8(3)</td>
</tr>
<tr>
<td>Si</td>
<td>0,2094(8)</td>
<td>0,2094(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li_2MgSi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>0,124(5)</td>
<td>0,149(6)</td>
<td>0,970(8)</td>
<td>2,6</td>
</tr>
<tr>
<td>Mg</td>
<td>0,110(6)</td>
<td>0,2105(6)</td>
<td>0,2105(6)</td>
<td>1,8(3)</td>
</tr>
<tr>
<td>Si</td>
<td>0,2094(8)</td>
<td>0,2094(8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Экспериментальные массы можно получить у авторов.
ГИДРИРОВАНИЕ СО,
АЦЕТИЛЕНА И ИХ СМЕСИ НА КАТАЛИЗАТОРАХ,
СОДЕРЖАЩИХ МЕТАЛЛЫ VIII ГРУППЫ

Исследовано раздельное и совместное гидрирование CO и ацетилена на катализаторах, содержащих некоторые металлы VIII группы (Fe, Ni, Pd, Rh), на различных носителях (Cr₂O₃, SiO₂, Al₂O₃, TiO₂, Ti). Сопоставлено распределение продуктов синтеза в этих реакциях и определено влияние CO и C₂H₂ на их совместном гидрировании.

При синтезе из CO и H₂ на пластиках железных катализаторах при высоких давлениях ацетилен ускоряет процесс с одновременным увеличением выхода высоких спиртов [1, 2]. На кобальтовых катализаторах при атмосферном давлении добавки ацетилена приносят к увеличению выхода жидких углеводородов [3].

В настоящей работе исследовано раздельное и совместное гидрирование CO и ацетилена при атмосферном и повышенном (до 1500 кПа) давлениях на катализаторах, содержащих некоторые металлы.

© С. Н. Орлик, Ю. И. Пятницкий, Г. Г. Гирушин, 1992